

This technical report was prepared for the

SEI oint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings In this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review aid Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

Ai,

.............

1.Itouto Table of Contents1
2. Hardwar Conf~guration 2

2.1. Processors 2I2.2. The Central Switch 2
2.3. The Scheduler 3

3. Software Conflguration 4
3&1. The Taa& Library 41 . Iuue

S.Assumptions
6.Appendix I - Example9

6.1. Simulation Input9
6.2. Simulation Output 12

7.Appendix 11I- Simulator Commands 15

Ii 3

Example:
> Switch
Niassage overhead (ma): 0.005
Time per bit (ma): 0.001

"A 2.3. The Scheduler
At present, the simulator does not deal explicitly with any processor which is responsible for system
scheduling. Most of the operations which would be performed by the scheduler processor are available to

the user of the simulator, and therefore this user may be considered to be playing the part of the

scheduler. In the future when the operation of the proposed scheduler have been defined more precisely,
the simulator may be modified so that a scheduler drives the current version of the simulator, and the user
merely sets up the operation of the scheduler.

4,-.

II

a,.

% -N.'%

-r A,.

*d~ ~P N

4

3. Software Configuration
The designer of a software system will typically begin with a single hardware configuration which will be
loaded at start-up time. His task is then to produce descriptions for a collection of software components
to be run on this hardware, and to specify the Interconnections between them which are required to
produce a coherent program. These are specified in terms of a variety of abstractions, which will be
described in this section.

3.1. The Task Library
Before a user may simulate a heterogeneous machine program, descriptions must exist for the individual
tasks that will constitute the program, as well as the types of data which are to be manipulated by the
program. These descriptions are stored in the task library, which may be read to or from a disk file as

needed. Presumably the user of the simulator will start with a library containing the standard tasks which _

are available as utilities, and will then add descriptions for a number of tasks which are to be specially
written for the system being simulated.

At present, the simulator provides fairly simple facilities for creating and modifying task descriptions. A
user may create a basic task description, consisting of a task name and a list of input and output ports
(named, typed 10 channels). He may then specify additional information concerning the task in the form

of attributes, which consist of named strings which provide various sorts of informations about the task.
The two attributes which are of primary interest in the simulator are the "processor" and 'liming"
attributes. The first of these is used to select a version of a task which is appropriate for the processor it ,..,
is to run upon, and the second provides a general description of the behavior of the tasks operation which
is used to simulate the task's execution.

sMMEN -- This is a slight departure from the description in the language reference manual,

which presents the timing information as an entity separate from the Attributes. The
simulator also associates a special meaning with the "LoadTime" attribute, which specifies
the expected time required to download the code for the task to the processor. By default
this is O.

Attributes for a task may be added, deleted, or modified by the user at any point. Facilities also exist to

select tasks from the library based upon the name or upon task attributes.

Every data type which appears In a port description must be described to the simulator. At present, the
simulator supports two varieties of types. Simple types are described merely in terms of their names and .;
their sizes (in bits; the size of an array type is taken to be the element size times the number of elements).
Union types represent a class of data types, all of which may be handled in the same way. One type is

- ., said to satisfy another if all of the simple types which constitute the first are also present in the second.
The system provides facilities for creation or deletion of both simple and union types. .. , I

Examples:
> Union_Type Number
Components: real, integer
> Create Task print
InPorts: Print_In, integer
Out Ports:-""

> Set processor="sun"
> set timing="(PrintIn [3,4.5])+"
" set author="hqb"

.1',.

"-, .., " - " """.. :'',,:' :''-.': - .-.<. .".".

UI 5

3.2. Processes
Since a task Is fairly useless if it merely sits in a library, there must be some way for the code
corresponding to a task description to be loaded onto a processor and executed. In the simulator, there
exist facilities to select a task based upon its name, attributes, and the number and type of ports
associated with it, and instantiate it on a given processor as a process. The ports corresponding to this
process (which have the same types as the associated task, but may have different names) may then be .

j

connected to ports belonging to other processes in order to form a complete program. At present, the
simulator assumes that only one process will be active on a processor at any given time.

The operation of a process is simulated based upon the "timing" attribute of the associated task. This
template is assumed to fairly precisely characterize the I/O behavior of the process when run upon the
processor it was written for. All of the internal operations of the process are assumed to be reflected in
the delays specified between successive I/O events. The process may have multiple threads of control, p
and certain sequences of operations may be iterated a certain number of times (or indefinitely). Thus the
following template

"(13,5] (([2,4] outport.integer)+l0 II ([3.5,*] outyport.real)+l0))+"

describes a process which repeatedly: waits between 3 and 8 milliseconds, and then outputs 10 integers
at intervals of 2 to 6 milliseconds at the same time that it outputs 10 reals at intervals exceeding 3.5
milliseconds (averaging 7 milliseconds), waiting for both sets of output operations to complete before

starting the next iteration. The fact that output operations are being performed is inferred from the fact
that outport is an output port. Presumably out.port accepts a union type that includes both integers and F.
real numbers. In this example, there are no input ports.

couENr - The syntax for timing expressions vanes somewhat from the language
reference manual:.

o Type specifiers for output operations have been added, while the operation
specifier has been dropped.

* Time windows in queue operations are not allowed. Time windows in delay
operations consist of relative times. Notice that the word "delay" is omitted .r.
before the time window. W4

* Guards of the form when, before, during, and after are not implemented. I
Only the repeat guard is im'plemented.

* The defaut time unit is the milisecond.
Using the correct syntax from the language reerence manual, the example above would be
written as:

loop delay[O.003,0.008,
(repeat 10 => (delay[O.002O.0061 outpot) II
repeat 10 => (delay[O.0035, "] outpot))

Examples:
> Find print --I Creates candidate list
Requirements: Author="hqb"
> assign --I Selects one candidate from list pr,

Processor: procl
5 ,Process nam : print process

m . ' in-Ports : inport, integer

OutPorts:,.

'.J

6

3.3. Queues :, .
Processes running on different processors exchange data by passing it through queues. The simulator ' '

views a queue as being a connection between two ports, with an optional upper bound upon its size. The
assumption is made that data being sent through the queue may be temporarily stored in the buffer of P |
either the input or the output processor, and that it is transmitted from one buffer to the other by means of
the central crossbar switch, which Is also used to transfer control messages in order to insure that both
ends of the queue are consistent with each other. For convenience in reference, each queue within the
simulator is given a unique name. r

The user may specify data transformations to be performed upon data submitted to a queue. This
transformation is described in terms of the input and output types (which may be union types) and the

amount of time (milliseconds per bit of the input type) which is required for the buffer to perform the t" .

conversion. If the type conversion is too complex for the buffer to handle (or more efficiency is required),
the conversion must instead be written as a task and run as a normal process. Several transformations -i

may be specified on a single queue (corresponding to different members of a union type), but each simple
type which may be produced by the feeding port must either satisfy the type of the consuming port, or i
satisfy a type conversion which produces a type which satisfies the consuming port.

In addition, it is possible during a program simulation to request the current size and average size of any

queue.

X" .p~ Examples:

-- I assume sort2 yields reals
> Connect -bound=20 printqueue, sort2.out, printyprocess.inport
Created with name printqueue
The following types are still unmatched:

real
> Convert printqueue, real, integer
Time per bit (ms): 0.01

3.4. Special Processes
In order to increase the flexibility of the heterogeneous machine, a set of special operations have been
proposed which would be implemented by the buffer processors. These operations: Merge. Deal, and
Broadcast, appear similar to processes in that they consist of a collection of input and output ports
connected via queues to ports in other processes. These special operations are each declared by a
separate command within the simulator which accepts lists of input and output ports and a mode which

-: further describes the process's operation, creates the desied special process, and associates it with the
appropriate buffer. The assumption is made in simulating these special tasks ta the data movement
required to implement these operations within the buffers wi take negligible time. t may be that this

assumption is unreasonable, but it may easily be corrected if necessary.

Example:
> Broadcast
Out Port: generator.outport
In ports(s): sortl.in, print.inport -bound=20, dev null.trashbin
-- I The queue connecting the broadcast process to print-inport will be
--I limited to 20 elements. The process will be implmnted upon the
--I same buffer as generator.outport

,,,".,,

7

4. Simulating a Program
After the description of a complete program has been provided to the simulator, the user may tell the
simulator to start the processes running and view the resulting execution. The internal operation of each
process is simulated based upon the timing attribute (as described in Section 3.2), and the flow of data

between processes is simulated in terms of the high level machine description and the abstractions
described above. The system provides a screen oriented display of the operation of each process (in
terms of a timing template with the current operation highlighted) and histograms showing the size of
each queue. It also displays a running log of operations performed by various components of the system,
which should thoroughly characterize the operation of the system. This log is also written to a file so that
it may be studied in more detail later. (It is possible to turn off the screen display of the log, and in later
versions of the simulator it will probably be possible to request that only selected classes of operations be
displayed.) ! a-
The simulator is currently set to run the simulation until a given amount of virtual time has passed in the -.

simulation (or until all processes have run to completion). When this time limit has been exceeded, the
simulation stops and the user may either continue for another increment, or restart the simulator at time 0.
Alternatively, he may clear the current simulation and set up a completely different one. In the future, this
may by modified so that the user can also step through the simulation one simulator event at a time.

.0

%

- ,a

OP .

bbo

.. , .-.1

5. Assumptions
This section contains a brief (and hopefully somewhat complete) description of the assumptions made by

the simulator, along with analyses of the difficulty of correcting any invalid assumptiors. Most of these
have been described elsewhere In this document

" The speed of the switch is 0.001 milliseconds overhead, and 0.0002 milliseconds per bit.
This is easily modifiable via a simulator command.

" Messages will be sent through the switch In two priority classes: Control and Data. This
assumption (and the next) are isolated within the simulator code to allow easy modilcation.

" Each message Is non-interruptable, and blocks other messages while it Is being ransmitted.

" Each buffer is associated with exactly one processor. This is easily modifiable within the
simulator code.

* Buffers may handle both input and output data, and have a unlimited amount of storage
available. The first assumption is more pervasive than the previous ones, but not impossible
to modify. The memory requirement, on the other hand, may be softened considerably by
specifying bounds on all queues in the application.

" The buffer's internal operation is fast enough that Merges, Deals, and Broadcasts may be
implemented upon the buffer with negligible delay. Processing delays may easily be
accounted for within the code, but the assumption that these special processes may be
handled by the buffers is fairly deeply rooted.

" A fairly large class of simple data transformations may be performed by the buffer processor.
If this isn't true, then this capability of the simulator may simply be ignored.

" The timing descriptions described are adequate to characterize the operation of a typical
task. Extensions to these templates are certainly possible, but we do not yet have sufficient
knowledge of the applications to determine what would be useful.

I"

-9

I _'
-- ,

U,

Vt

ha

16

PRINT TASK Print a readable description of the current task. (See SELECTTASK)
PRINTLIST Print readable descriptions of all tasks in the current list. (See FIND)
PRINT-TYPE TypeName

Printadescript of a sngle type.
PROCESSOR Name, Processor Type

Create a new processor of the given type with the given name.
QUIT Exits the program, writing out log Into to "testlog". Does not write out any changes

which night have been made to the program libreay.
READ Filename Read the contents of a program library from the given file.
REMOVETASK Causes the current task to be eliminated from the program library. (See

SELECT-TASK)
REQUIRE Attribute-Value

Removes all tasks which do not have the given attribute value from the current task -

list (see FIND).
RESET Returns the simulator to Its original state, leaving only the program library.

RESTART Time Same as RUN except that it resets the dock and the program state back to the initial "'
values.

RUN Time Start the simulator running for Time milliseconds. After each simulator step, the
current state of each process and queue Is displayed. In addition, If the Verbose
switch is on, each I/O action is displayed. (A complete log of these actions will be
written to the "testjlog" file in any case.) .:

SATISFIES Typel, Type2 *,

States whether or not every component type of Typel is contained in Type2.

SELECTTASK Task-Number
Takes the Nth element of the current task list and selects it as the current task, so
that it may be operated on by other commands.

SET Attribute-Value 'V

Sets the value of the given attribute for the current task. (See SELECTTASK)
STATISTICS Print a random set of statistics about the current simulator run.

SWITCHTIME Message_ Timew, Te.perBit
Modifies the characteristics of the switch. Each message will take MessageTime +
TirneperBit Message-Size milliseconds to transmit (after it reaches the switch).

TYPEDEF Name, Size_in_Bits
Creates the given simple type in the program library.

UNIONDEF Name, <Component, ...> b
Creates the given union type with the list of component types given.

UNSET Attribute Removes the definition of the given attribute from the current task. (See %
SELECT TASK)

VERBOSE Toggles verbosity If on, then information concerning I/O activity will be continuously
printed as the simulator is running.

WRITE Filename Write the current contents of the program library to the given file.

ME, Mf

V.,

i'

I 17

References

V]1 M.R. Barbaccd and J.M. Wing.
Durra: A Task-level Description Language. (in process)

Technical Report, Software Engineering Institute, Carnegie Mellon University, 1986.

4,

